
i 

 

Flat Plus Flat Equals Up in the Middle 

A Primer on the Arithmetic of Uncertainty 
 

by 

 

Sam L. Savage 

 

 

  



ii 

 

About this Primer 

When people perform calculations with numbers they are not certain 

of, they often substitute “average” values for the uncertainties and 

then hope for the best. This leads to a set of systematic errors that I 

call the Flaw of Averages, which explains why so many projects are 

behind schedule, beyond budget, and below projection.  

 

Today, laptop computers and common spreadsheet software are 

powerful enough to perform arithmetic with uncertainties. This 

arithmetic introduces three fundamental concepts not present in the 

arithmetic of numbers: diversification, the impact of non-linear 

calculations, and interrelated uncertainties.  

 

This primer demonstrates these concepts from an experiential 

perspective using calculators created in native Microsoft Excel using 

the SIPmath™ Modeler Tools developed at nonprofit 

ProbabilityManagement.org. 
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The Calculators 

The Primer makes use of the six Excel files 

described below. For these files to function 

correctly, Excel’s Calculation option must set to 

automatic on the Formulas ribbon. 

 

Be sure to save copies of these files in case you end up overwriting a 

formula. 

 

       
Spinner.xslx p.4 Histogram.xslx p.4 SIPmath Dice.xlsx p.9 

The RAND 
formula 

Histograms and convergence Simulating Dice 

 

  

SIPmathCalc_1 p. 6 SIPmathCalc_2 p. 11 
Combining numbers and distributions Calculations with uniform distributions 

  

  
SIPmathCalc_3 p. 20 SIPmathCalc_4 p. 32 

General calculations with uniform and 
normal distributions 

Calculations with interrelated 
uncertainties 
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Introduction 

Somewhere in Italy, in 1199, Leonardo Fibonacci struggles to explain 

Arabic numbers to a group of medieval accountants. “Can’t you see 

we’re busy?” they respond impatiently. “We only have three months 

to add up this column of Roman numerals.” In spite of such 

encounters, the famous mathematician prevailed, and Western 

culture adopted his recommended Hindu-Arabic numbering system. 

The real revolution, however, was not just the symbols 0i through 9, 

but a new category of thought. We call it arithmetic.  

 

There is a parallel category of thought that deals with uncertainties, 

not numbers. In the arithmetic of uncertainty, addition, subtraction, 

multiplication, and division are accompanied by such concepts as 

diversification, contingencies, and interrelationships. The result of 

such a calculation is not a number; it is a statement about chance. For 

example, instead of receiving an estimate for profit, one receives the 

chance that profit will achieve a specified target.  

 

The theoretical foundations of this subject date back hundreds of 

years but are shrouded in a cloak of algebra. So, when faced with an 

uncertain future, the typical manager plugs in “average” assumptions 

and hopes for the best. This gives rise to a set of systematic errors I 

call the Flaw of Averagesii, and it explains why so many undertakings 

are behind schedule, beyond budget, and below projection.  
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Figure 1 – A classic example of the Flaw of Averages; the statistician who drowns in the 

river that is on average 3 feet deep 

The development of computers allowed us to simulate uncertainties, 

leading to computational statistics techniques such as a Monte Carlo 

simulation. These are now common tools for those with statistical 

training. Just as accounting software is meaningless without a 

background in standard arithmetic, simulation software cannot be 

intelligently used or interpreted without some knowledge of the 

arithmetic of uncertainty. 

 

The common spreadsheet has recently become powerful enough to 

simulate uncertainty using the open SIPmath™ standard from 

ProbabilityManagement.orgiii. In this environment, you can use the 

arithmetic of uncertainty with the same keystrokes you use for the 

arithmetic of numbers. And because it is interactive, performing 

thousands of calculations with each of those keystrokes, you can 

learn it experientially much as you learned to ride a bike. As Steve 

Jobs suggested, you should use the computer as “a bicycle for the 

http://www.probabilitymanagement.org/Sipmath.htm
http://www.probabilitymanagement.org/
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mind,” and follow along with the included SIPmath calculators as you 

go through the lesson.  

Chapter 1: Communicating and Visualizing 

Uncertainties 

Uncertainty as Data, the SIP  

Since the late 1940s, computers have been used to simulate 

uncertainty. The discipline of Probability Managementiv represents 

uncertain numbers as arrays of previously generated data called 

Stochastic Information Packets or SIPs. Calculating with such arrays is 

called SIPmath. For example, to create a SIP of the uncertainty of 

rolling a die, you could perform 1,000 rolls and store the results in a 

row or column of your spreadsheet as shown below.  

 

   = 6, 1, 2, 3, 6, 2, 5, 5, 4, 5, 2, … 2, 4, 1 

 

The SIP of a die roll 

Of course, this does not reflect all possible outcomes that could occur 

in real life. For example, your roll might bounce onto the floor, 

whereupon you would lean down to retrieve it and then crack your 

head on the table on the way back up. This problem is described by 

Nassim Nicholas Taleb as the Ludic Fallacyv in his book, The Black 

Swan. Although we should be on guard for such rare events, the SIP is 

nonetheless a great improvement over succumbing to the Flaw of 

Averages and expressing each roll of a die as the single average 

outcome of 3 ½. In fact, I refer to the belief that you can understand 

uncertainty without understanding dice as the Ludic Fallacy Fallacy. 
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The “Number One” of Simulation 

Consider the uncertainty resulting from a game board 

spinner that goes between 0 and 1. Instead of the six 

discrete outcomes of a die, there are theoretically an 

infinite number of outcomes, continuous between 0 

and 1. This simple uncertainty is the basic building 

block of most computer simulations, and it describes the behavior of 

the RAND() formula in Excel. In the arithmetic of uncertainty, it plays 

a somewhat parallel role to the number “1” in ordinary arithmetic. 

 

Open Spinner.xlsx and observe the RAND() formula in cell C3. Press 

the <F9> key (<⌘=> on the mac) to get a feeling for how it relates 

to the arrow on the spinner. Type =RAND() into the blank cell of a 

worksheet and you should get similar but not identical results to 

those in C3.  

 

Histograms, the Shapes of Uncertainty 

A visual description of an uncertain number is a bar graph, known as 

a histogram or distribution, which represents the relative likelihood of 

all possible outcomes. For the spinner, the bar graph is flat, because 

all numbers between 0 and 1 are equally (uniformly) likely. Therefore, 

the spinner is said to have a uniform distribution. Instead of thinking 

of an uncertainty as a number, it is better to think of it as a shape—

the shape of its distribution. 

 

Open Histogram Intro.xlsx 

Conceptually, a histogram may be viewed as the result of recording 

multiple spins of the game board spinner across a number of intervals 
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or bins. Enter the number of desired spins between 1 and 10,000 in 

cell C3. For the first few spins, the bars appear to have no pattern. But 

as more spins are recorded, the graph becomes more uniform until at 

10,000 it is virtually flat. Unlike the Spinner file, which generates 

random numbers with the RAND() formula, this file uses a pre-

generated SIP of 10,000 trials so the results are repeatable.  
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Figure 2 - The Generation of a Histogram 

Idealized Uncertainty 

Open SIPmathCalc_1.xlsx, as shown below.  

 

With this file, we will perform some 

simple arithmetic calculations on an 

idealized version of the spinner used in 

the histogram example. Column G 

contains a SIP comprised of 10,000 

outcomes of a spinner, which have been adjusted to yield a perfectly 

flat histogram. These are known as stratified trials by simulation 

experts. Unlike the trials in the histogram file, which were simulated 

to mimic the results of an actual spinner, the stratified samples are 

generated as follows. It starts with the 10,000 numbers 0.00005, 

0.00015, up to 0.99995. These numbers are then randomly shuffled 

like playing cards.  

 

It is sometimes useful to store metadata with a SIP. Here, the average 

of the 10,000 outcomes of the idealized trials, or 0.5, is stored just 

below the trials, in position 10,001. Specify the trial number you wish 

to view in cell D3, or enter 10,001 to display the average. 

Combinations of SIPs and Numbers 

Click on the Multiply and Add tab of the SIPmathCalc_1 worksheet.  

Uncertainties and numbers may be combined using standard 

arithmetic. This sheet allows you to multiply the spinner uncertainty 

by a number and then add another number to the result. This is the 

formula for a linear function: 

 

Y=mX+b, 
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where X is the SIP of the spinner. The histograms on this sheet have 

bins of width 0.1. The vertical axis denotes the chance that the result 

appears in a given bin. Adding a number to a SIP (b in the formula 

above) shifts its histogram to the right, so I will call it “Shift” instead 

of b in the calculator. Multiplying a SIP by a number (m in the formula 

above) stretches the width of the histogram so I will call it “Stretch.” 

In the example below, we have multiplied a spinner by 2 and then 

added 1. The resulting histogram starts at 1 and has a width of 2, 

extending from 1 to 3. The bars of the resulting histogram have 

become shorter because there is less chance of the number ending 

up in any given bin. 

 
 

Change the numbers in cells H8 and J8 and observe the changes in 

the histogram at the bottom of the screen. 

 

Uncertainties with distributions of any shape are stretched and 

shifted in this manner under multiplication and addition by numbers. 
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Chapter 2: The Basic Arithmetic of Uncertainty 

Lesson 1: Addition 

What happens if you add the results of two separate spins or RAND() 

formulas together? This is the rough equivalent of “1+1” in the 

arithmetic of uncertainty. Before continuing, see if you can select the 

correct distribution from the figures below.  

 

  

           a            b           c         d                e           f 
ANSWER: See footnote1 

   f 
 

Why is that the answer?  

 

Instead of spinners, think of dice. 

 

 

When you roll one die (                      ), you can get any of the numbers 

from 1 to 6 with equal likelihood. A histogram of the results from 

many rolls of one die is flat across like that of one spinner. 

 

What happens when you add the outcomes of two dice, then repeat 

the process many times? There is only one combination that results in 

2, and one that results in 12. But there are six separate ways to get a 

7, so the histogram of the results 

goes up in the middle.  

 

                                                      
1 Answer is the 6th letter in the alphabet 
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Similarly, with the sum of two spinners, the only way to get a number 

close to 0 is with two spins that are close to 0. The only way to get a 

sum close to 2 is with two spins close to 1. But a sum close to 1 may 

be achieved with many combinations such as 0 and 1, 1 and 0, 0.5 

and 0.5, and so on.  

 

In the world of both spinners and dice, Flat Plus Flat Equals Up in the 

Middle.  

 

 

Let’s explore the arithmetic of 

dice with SIPmath Dice.xlsx. 

This is also a good introduction 

to the rest of the SIPmathCalc 

calculators. 

 

1. SIPs of ten thousand rolls of 

each three dice are stored 

starting in row 15. 

2. Cell D2 contains the rolls 

displayed below. For example, the first roll is a 4, 6 and 5. Change 

D2 to 3, and you will get three 4s. 

3. These cells contain Index formulas that point into the three SIPs. 

4. Cell D8 is the Result of performing arithmetic on the three dice. 

All 10,000 trials will be run through this cell. Currently it is 

pointing to the first die. Try adding the first two dice together by 

entering the formula =D4+D5. 

5.  The histogram displays the results of the 10,000 rolls. When you 

add two dice together in cell D8, this will become a triangle.  

6. Cell D9 contains the Average of the 10,000 rolls. When you add 

two dice this will go from 3.5 to 7. 

1 

2 

3 

4 

5 

6 

7 
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7. You may specify conditions on the calculation in cells D10 and 

E10, whereupon cell G10 displays the chance that those 

conditions will be met.  

 

Experiments: 

• Add two dice together to confirm the triangular histogram. 

• Multiply two dice together. Can you explain the histogram? 

• Add three dice. How does the shape change from that of 

adding two dice? 

 

So What? 

The principles demonstrated above with spinners and dice are at the 

heart of diversification, which plays a critical role in risk reduction in 

banking, investing, engineering, and many other applications. It 

underlies the saying that you shouldn’t put all your eggs in one 

basket. Open SIPmathCalc_2.xlsx and we’ll learn more.  

 

Each of the Input cells C11 through H11 are linked to the outcomes of 

10,000 spins of an independent spinner. These are idealized like the 

ones in SIPmathCalc_1, but each one has been permuted (scrambled 

in order) separately to assure that the number appearing on any 

spinner in a given trial has no relation to numbers appearing on the 

other spinners for that trial.  

An Investment Example 

To provide some literary appeal to the spinner, imagine multiplying 

the results by $1 million to model an uncertain investment. 

Intuitively, the return will range between 0 and $1 million with an 

average of $500,000. To thicken the plot, suppose that you owe 

$200,000 to ruthless loan sharks, which means that a spin of 0.2 or 

less will be disastrous.  
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We will now use SIPmathCalc_2.xlsx to calculate the chances of 

becoming shark bait.  

 

With the cursor in the Output cell 

J11, type “=” and then click in one 

of the Input cells, and press 

<Enter>.  

Next, change the Target value in 

J14 to 0.20. 

 

This runs all 10,000 spins through 

the Output cell, resulting in the same flat histogram as the Input you 

selected. The formula in cell J15 shows us that there is a 20% chance 

of missing our Target of 0.2 in cell J14. That is, there is one chance in 

5 we won’t be able to pay back the loan.  

 

 

What would happen if we split our 

investment over two independent 

spinners?  

 

Change the Output cell formula to 

reflect putting half your money in 

each of two input cells as shown on 

the left.  

 

The shape changes to a triangle, as predicted by the dice, and 

because it goes up in the middle, it goes down on the ends, implying 

lower risk of ruin. Cell J15 indicates that the risk is now only 8%, a big 
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drop from 20%. Furthermore, cell J13 indicates that we still have an 

average of $500,000. 

 

So, how did the computer do that so fast? The PMTable sheet 

contains the results of 10,000 trials for the Output cell calculated with 

an Excel function known as the Data Table. Whenever one of the 

Input spinners is referenced in Output cell J11, the stored results are 

used to calculate 10,000 possible outcomes for the Output cell. 

 

In this setup, Output cell J11 has been named ‘Output,’ so you can 

refer to the cell this way instead of referring to it as J11 when you 

perform calculations with it. For example, in J16, we take the 

MAX(Output) instead of MAX(J11). 

 

Now, how about diversifying 

across three spinners? In the 

Output cell, we could enter 

=SUM(F11:H11)/3, or 

equivalently, the =AVERAGE 

function. 

 

Enter the formula shown in 

cell J11. 

 

The risk of ruin has now 

dropped to 4% with the same 

average return. Notice that 

the histogram is now bell 

shaped.  
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Now take the average over all six spinners.  

 

The bell becomes narrower, and you have virtually nothing to fear 

from the loan sharks.  

 

Each investment (entered in the Output cell formula), from the single 

spin to the one diversified across six spins, returned the same average 

of $500,000. But after a few keystrokes, the calculator indicates very 

different levels of risk. This shows how erroneous it can be to 

represent uncertainties with single numbers. 

The Central Limit Theorem 

 
The above example drives home the importance of diversification. 

But this is just a special case of a more profound phenomenon known 

as the Central Limit Theorem, which some have called the most 

important result in mathematics. It describes precisely how the sum 

or average of independent uncertainties become bell shaped as the 

degree of diversification is increased. This bell-shaped uncertainty is 

called a Normal or Gaussian distribution after one of its discoverers, 

Carl Friedrich Gauss (1777–1855), shown posing with his distribution 

on a German 10 mark note. It is important to mention that this result 

does not just apply to outcomes of spinners, but to independent 

samples of almost all uncertainties.  
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Normal distributions may be completely specified by two numbers, 

the average (this is where the distribution is centered), and the 

Standard Deviation, a measure of how wide the distribution is (or 

how much it has been stretched).  

 

One more consequence of the Central Limit Theorem is that, when 

two Normal uncertainties are added together, the result is also 

Normal. The average of the sum is equal to the sum of the averages 

of the added uncertainties. The width of the sum will be discussed in 

Chapter 4. 

Lesson 2: Subtraction 

If you subtract one spinner from another (=G11-H11) you get the 

same triangular shape as when you add two spinners. But the average 

is now the average of one spinner minus the average of the other 

spinner, or zero.  

 

You can determine the average derived from adding or subtracting 

uncertainties by merely adding or subtracting the averages of the 

uncertainties themselves. But this is ONLY true in general for addition 

and subtraction. As we will show, the average of other arithmetic 

calculations is not always equal to the calculation performed by using 

the average of each uncertainty.  

Lesson 3: Multiplication 

Multiply two independent spinners together. 

 

And you will get the shape below. 
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The minimum is zero, and the maximum is nearly 1. But it is not flat 

or triangular. The only way to get a 1 is if both spinners result in 1. On 

the other hand, if either spinner results in zero, you get zero for the 

product. That’s why the histogram is so much higher on the left. You 

will also note that the average of .25 is the product of the averages of 

the two spinners, but this is only the case if the underlying 

uncertainties are independent, as we will see further on. 

So What? 

Imagine that you are launching a new internet service with uncertain 

demand and price. The demand in millions of customers has the 

uncertainty of a spinner, while the price in dollars has the uncertainty 

of a second independent spinner. The revenue in millions is the 

product of demand and price, so the maximum is $1 million, the 

minimum is $0, and the average is $250,000. But we can see from the 

calculator that it is virtually impossible to get a full $1 million, and 

from cell J15 there is only a 40% chance of achieving at least the 

average revenue of $250,000. 
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Lesson 4: Division 

Division is the only operation in standard arithmetic with a potential 

land mine—a zero in the denominator. With the arithmetic of 

uncertainty, all it takes is a chance of zero in the denominator to 

cause trouble. We will start by investigating the number 1 divided by 

a spinner (the reciprocal of the spinner). 

 

Enter =1/H11 in the output cell. 

 
 

Because we have used pre-computed trials of an idealized spinner, of 

which the smallest value is 0.00005, the maximum output is 

1/0.00005 or 20,000. But if we had generated the spinner trials in a 

different manner so that the smallest number was actually zero, then 

the maximum would have been infinite. So, this is an unstable 

calculation and NOT reliable. The danger of dividing by very small 

numbers transfers over to dividing by uncertainties that have a 

chance of being very small. 
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The histogram is puzzling at first, but may be explained as follows. If 

you adjust the target, you will see that 99.9% of all outputs are below 

1,000. All those trials lie in the first bar of the histogram. The 

remaining tenth of a percent of the trials lie in the remaining bins, 

resulting in the long tail on the right, ending at 20,000 in this 

example. 

So What? 

Consider estimating the cost per ton of a smelting process that 

extracts metal from ore. It costs $1,000 for the energy and the ore 

itself to fill the smelter. Now, imagine that the quantity in tons of 

metal derived from this process is uncertain due to the varying purity 

of the ore. We will model this quantity as a spinner that goes 

between 0.1 and 1.1 (avoiding zero). That is, it is equally likely that 

the number of tons will be somewhere between a tenth of a ton and 

1.1 tons, due to the uncertain purity. The average tonnage is 

0.5+0.1=0.6. So, you might guess that the average cost per ton would 

be $1,000/0.6= $1,667. We will model this by adding 0.1 to a spinner 

as follows. 
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In SIPmathCalc_2, enter the formula =1000/(H11+0.1) in the Output 

cell, and 1667 as the Target. 

 

 
 

Note that there is a 50% chance of being over or under the target. 

However, the cost per ton given the average tonnage is $1,667, but 

the average cost per ton is almost $2,400. This is not close enough to 

keep the accountants happy. 

The Flaw of Averages 

As we have seen, if you represent uncertainties as ranges of possible 

outcomes in a spreadsheet, you can perform arithmetic on them just 

as if they were numbers. Why bother? Recall the various spinner 

investments. If you described them only in terms of their average 

returns of $500,000, they would appear indistinguishable. But, of 

course, they have widely varying risks. I call this the weak form of the 

Flaw of Averages. If you perform the calculation with the averages of 
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the inputs, although you completely miss the risk implications, at 

least you get the average output right.  

 

The strong form of the Flaw of Averages doesn’t even get the average 

right, as demonstrated by the cost per ton example. This occurs when 

the calculations are non-linear, as we will discuss in Chapter 3. 
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Chapter 3: Non-linear Formulas 

Jensen’s Inequality 

The technical term for the strong form of 

the Flaw of Averages is Jensen’s 

Inequality, after the Danish mathematician 

and engineer Johan Ludwig William 

Valdemar Jensen (1859 – 1925). It applies 

to non-linear formulas, and helps explain 

why so many ventures are behind 

schedule, below projection, and beyond 

budget. 

What is a non-Linear Formula? 

A linear formula only allows you to multiply variables by numbers, 

add the results together, and add a constant. All other formulas are 

non-linear. Y=mX+b is one of the simplest linear formulas. 

SIPmathCalc_3 

Open SIPmathCalc_3.xlsx. Note the following primary differences 

from SIPmathCalc_2.  

1. The Random Inputs may be set to any of 12 independent SIPs, 

each with distributions that are outcomes of spinners 

(Uniform) or normal (Gaussian). 

To change one of the Random Inputs, click and hold one of the 

drop-down arrows and select a distribution. 

2. The sparkline graphs now contain a number, which may 

represent the value on any of the 10,000 trials as specified in 

cell H2, set to 6 below. 
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Setting H2 to 0 sets the input distributions to their average 

values.  

3. Once the Output cell, C11 contains a formula that depends 

directly or indirectly on the Random inputs of row 4, all 10,000 

trials of the Output distribution are displayed to the right on 

both a histogram and cumulative graph. 

4. You may enter your own intermediate formulas and numbers 

to feed the Output cell in rows 6 and 8. 

5. Note that the parameters of the histogram may be edited for 

better readability by values in cells J18 through M18. These 

cells turn yellow to remind you that they are not the defaults. 

You may return to the defaults by deleting the values. 
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Lesson 1: Why so Many things are Behind Schedule 

Imagine a project consisting of four parallel tasks. Each task is 

uncertain in duration with a uniform distribution between 1 and 2 

months. Thus, each task will take 1.5 months on average. Therefore, 

you might reasonably expect the project to take 1.5 months on 

average. Let’s find out. Open SIPmathCalc_3 and delete the contents 

of rows 6 and 8, and the Output cell. 

 

We start by modeling the task duration in months by adding 1 to each 

of four uniform distributions. First, make sure the first four Random 

Inputs are set to Uniform1 through Uniform4 (cells C3 through F3). 

Then, enter the formula =C4+1 in cell C6, and then copy it over 

through column F. For example, the formula in E6 should be =E4+1. 

 

The project won’t be finished until the last of the four tasks is 

finished. So, in the Output cell (C11) enter =MAX(C6:F6). This formula 

causes the non-linearity. See the Output histogram below. 
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Set H2 to 0 to display the average value of the inputs. This sets the 

duration of each task to its average of 1.5 months as shown in C6 

through F6, and results in the project also finishing in 1.5 months as 

shown in cell C11.  

 

So, the duration of the project, given the average assumptions, is 1.5 

months, but the average duration of the project (cell C12) is 1.8 

months. That is, if you sequentially entered all the numbers between 

1 and 10,000 in cell H2, the average value of C11 (Output) would be 

1.8. With linear calculations, there is no difference between these 

two results. That is, with a zero in cell H2, cells C11 and C12 would be 

equal. 

 

Next, set the Target (C14) to 1.5, the duration you would have 

assumed based on averages. Had you done this, there is only about a 

6% chance you would have come in on time. That is, the only way this 

could happen would be if all four tasks finished in less than 1.5 

months, which is like flipping four heads in a row on a coin.  
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So What? 

You rarely hear about projects coming in early, but it is common to 

hear about projects that are late. There are several reasons for this, 

but the principles demonstrated above are a big contributor. To help 

avoid underestimating project completion times, managers of large 

industrial projects often use specialized simulation software to 

estimate the distribution of completion times.  

Lesson 2: Why so Many Things Are Below Projection 

Imagine that you are ordering electronic equipment six months in 

advance of the Christmas selling season at a cost of $8 per unit. The 

demand is uncertain, but your best guess is 150,000 units with a 90% 

confidence interval of between 100,000 and 200,000 units. The selling 

price is $10, so that’s what you will receive on each unit sold, yielding 

a profit margin of $2 per unit. So, if you order 150,000 units, your 

expected revenue is $300,000 … or is it?  

Modeling Demand 

Because total demand is the sum of a large number of individual 

purchases, it is reasonable to assume that the uncertainty of total 

demand is normal. We will use the normal distributions in 

SIPmathCalc_3, which are Standard Normals. Standard Normal 

distributions have an average of 0, and a standard deviation of 1. If 

you recall from Chapter 1, when you multiply an uncertainty you 

stretch the results, and when you add to it you shift the results. You 

may think of the standard deviation as the stretching distance to get 

the required amount of uncertainty, and we will use the abbreviation 

SD. You decide what you want it to stand for.  

 

First, delete any formulas or numbers in rows 6 and 8 and the Output 

cell, then Select Normal 1 for cell C4. Next, set the percentiles in cells 
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C16 and E16 to 5% and 95% respectively. This will ensure that they 

encompass a 90% confidence interval. Because these numbers are 

large, it is recommended that they be expressed in thousands. That is, 

we will model the mean demand as 150 (000s) in cell C8, and a 

stretching distance (or standard deviation) of 1 (000s) in cell D8. Also 

create labels as shown in rows 5 and 7. Then, in C6 enter =D8*C4+C8. 

This will result in a normal distribution with a mean of 150 (000s) and 

SD=1 (000s).  

 

 
 

We will now interactively adjust SD until we achieve the desired 

confidence interval. First enter =C6 in the Output cell C11 to 

temporarily set demand as the output. The histogram should appear 

normal. Next, look at the percentiles in D16 and F16. These contain 

the standard Excel Percentile formulas. The 90% interval should run 

from 100 to 200 in (000s). You will need to increase the stretching 

distance in cell D8 until the 5th and 95th percentiles are approximately 

100 and 200. By experimenting with SD and observing cells D16 and 

F16, you will find that a value of 30.403 results in the desired 

percentiles. Also set the Target in C14 to 200. You should get the 

results below. 
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WARNING: It is important to note that, as in horseshoes and hand 

grenades, “close” counts with a simulation. It was satisfying to 

discover a value for SD that precisely matches the percentiles, but it 

imputes unwarranted accuracy on the results. A value of 30 is plenty 

close enough, so set it back to 30 to avoid this problem. As we will 

see, the errors resulting from representing demand as a single 

number, even if it is the correct average demand, swamp the 

inaccuracies in estimating the distribution of demand. 

The Empirical Rule of Normal Distributions 

Before computers made it so easy to calculate probabilities, people 

made use of what is known as the empirical rule when using the 

Normal distribution. This rule is reflected in the table below.  

 

68% of the distribution lies 
between 

1 Standard Deviation Above and 
Below the Average 

95% of the distribution lies 
between 

2 Standard Deviations Above and 
Below the Average 

99.7% of the distribution lies 
between 

3 Standard Deviations Above and 
Below the Average 
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This would not have helped us with a 90% confidence interval as 

specified in the problem above, and it would have been necessary to 

consult statistical tables. With computational statistics, rules such as 

these become less important. 

Modeling Quantity Sold 

Now that we have modeled uncertain demand, we will model sales. 

This is where the non-linearity sneaks in. If actual demand is less than 

the quantity ordered, then we only sell the demand. But if demand is 

greater than the quantity ordered, we stock out, and can only sell the 

quantity ordered. Therefore, enter 150 in cell E8 and label it 

“Ordered.” Next, model the quantity sold in cell D6 as the minimum 

of demand and quantity ordered. Put =D6 in Output cell C11 to graph 

the result. MIN, like the MAX formula, creates a non-linearity. Notice 

that the histogram of the quantity sold has a big spike on the right. 

That’s because any demand greater than 150 results in sales of 

exactly 150. 

 

 

Modeling Profit 

Create cells in row 8 for the price per unit of $10 and the cost per unit 

of $8. Next change the output cell to reflect profit in thousands. This 

is simply the price per unit times the quantity sold (total revenue) 
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minus the cost per unit times the quantity ordered (total cost), as 

shown below. 

 

 
 

Make sure that cell H2 is set to zero to display the average inputs. 

The output cell shows that the profit of the average demand is 

$300,000 while the true average profit is only $180,000. If you 

forecast profit based on average demand, then on average you will be 

about $120,000 below projection. The problem is that if demand is 

below average, you won’t make your numbers, and if demand is 

above average, you stock out and can’t take advantage of it. Set the 

target in C14 to 300 and you will see there is no chance of coming in 

above. Also, note that there is a 5% chance of losing almost $200,000.  

 

Now experiment with SD. If you change it back to 30.403, you will see 

it makes almost no difference in your average profit. In fact, if you 

lower it all the way to 5 you will still be $20,000 below projection. Set 

SD back to 30 when you are done. 

Histogram Setting 
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Histograms are most readable 

when the parameters are 

adjusted by hand. Note: When 

the settings are changed in cells 

J18:M18 the background turns 

yellow to remind you they are 

no longer automatic. When you 

are done, the defaults may be 

reset deleting the Override 

numbers. In the histogram 

shown, the number of decimals 

has been reduced to 0, and 

minimum and bin width have 

been set to make the X axis 

more understandable. 

Sometimes, setting the 

minimum and bin width will force the upper end of the histogram off 

the right side of the graph. In this case, you must increase the number 

of bins as shown on the right. 

 

 

 

Deciding How Much to Order 

It would make sense that ordering more up front would let us take 

advantage of higher demand if it occurred. On the other hand, if 

demand was lower than expected, you would then have more unsold 

inventory lying around and maybe you should lower the quantity 

ordered. Adjust the quantity ordered in cell E8, attempting to 

maximize the average profit in cell C12. These sorts of problems are 

non-intuitive, and really require a model to help us think through the 
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decision. When I made up a similar exercise for my first textbook, I 

expected the opposite result. 

So What? 

Every business opportunity that requires an up-front investment in 

capacity to meet uncertain demand faces some version of the 

problem above. That is, there is a serious downside if demand is low, 

and limited upside if demand exceeds capacity. No wonder so many 

ventures are below projection. 

Chapter 4: Interrelated Uncertainties and Modern 

Finance 

This chapter provides experiential insight into portfolio theory and 

option pricing. The models are not intended to provide numerically 

valid results, but rather to build directionally correct intuition through 

interactive simulations. When used in conjunction with a traditional 

book on finance, and a good source of financial data, these models 

will help connect the seat of the intellect to the seat of the pants. 

4.1 Fire Insurance is a Ridiculous Investment …  

unless you own a house to go along with it.  

 

Whether your house will burn down or not next year is uncertain. It is 

also uncertain whether your fire insurance policy will pay you money 

next year. But these two uncertainties are not independent, like two 

spinners. They are directly related; your insurance will only pay you if 

your house burns down.  

 

Many uncertainties in life are interrelated with other uncertainties, 

but usually less directly than the value of your house and your 

insurance policy. Statistical interrelationships became widely 
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House

1 $200,000

2 $200,000

3 $200,000

4 $200,000

: :

: :

: :

997 $200,000

998 $0

999 $200,000

1000 $200,000

House Insurance

1 $200,000 -$200

2 $200,000 -$200

3 $200,000 -$200

4 $200,000 -$200

: : :

: : :

: : :

997 $200,000 -$200

998 $0 $199,800

999 $200,000 -$200

1000 $200,000 -$200

recognized in the area of investments through the Nobel Prize-

winning Modern Portfolio Theory of Markowitz and Sharpe in the 

1950s and 1960s. This was followed by another Nobel Prize involving 

interrelated investments: The Theory of Options, developed by Black, 

Scholes and Merton in the 1970s. In fact, modern finance is 

fundamentally based on the arithmetic of interrelated uncertainties.  

 

But first, let’s explore how to model a house and fire insurance using 

SIPs. 

 

Imagine that your house is worth $200,000 and 

has one chance in 1,000 of going up in flames 

next year. Suppose that your insurance costs you 

$200 per year, and will pay the full value of your 

house if it burns. A SIP of the value of your house 

over the next year appears on the right. A fire 

reduces its value to zero on trial 998, but 

otherwise it’s worth $200,000. 

 

A SIP describing your insurance policy 

will have 999 trials with a value of -$200 

when your house doesn’t burn down, 

and one trial with a value of $200,000 - 

$200 = $199,800, when it does burn 

down (note you still need to pay your 

annual premium of $200). But, unlike 

previous examples in this book, the 

order of the Insurance SIP relative to 

the house SIP is critical. The insurance payout must line up with the 

fire loss or it is like buying fire insurance on a stranger’s house, which 

is ridiculous. 
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A set of SIPs such as these, which embody interrelationships, are said 

to be Coherent, and are referred to as a Stochastic Library Unit with 

Relationships Preserved, or a SLURP.  

 

As we will see in this chapter, interrelationships between the 

variables can have a profound effect on the resulting arithmetic. For 

example, when you add the SIPs of your house and your insurance 

policy above, you get $199,800 on every trial. So, in this special case, 

the sum of these two uncertainties is a certainty! 

4.2 SIPmathCalc_4 

The SIPmathCalc_4 calculator has the following features: 

1. The inputs include two uniforms (spinners), two standard 

normals (mean=0, SD=1) whose interrelationship may be 

adjusted, and two other distributions, called HAP, and PY. 

2. A control to adjust the degree of interrelationship 

(correlation) between the two normal. 

3. A scatter plot of the distributions in cells C8 and D8. 

4. An output cell with associated statistics and histogram. 

5. Scale factors to control the limits of the graph; note that the 
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parameters of the histogram are automatically set, but may be 

overridden in row 19 for better readability. To return to the 

defaults, simple delete the override values. 

 Scatter Plots 

Before computers, the primary measurement of statistical 

interrelationships was correlation as discussed below, but the best 

way to visualize the interrelationship between two SIPs is to create a 

scatterplot in which the X axis reflects the values that make up the 

first SIP and the Y axis reflects the corresponding values of the second 

SIP. Each data point in the scatter plot represents the value of the 

first SIP and the value of the second SIP for a given trial. 

Correlation 

The dictionary definition of correlation is the mutual relation of two 

or more things. There is also a mathematical definition of correlation 

used in statistics. The Pearson Correlation, as it is called, measures 

the degree to which the scatter plot of two uncertain variables lie 

along a straight line. Like many concepts from classical statistics, it is 

most applicable to normal distributions. As we will see, there are 

some distributions for which this sort of correlation is misleading. A 

major benefit of SIPs is that they can preserve statistical relationships 

within the data, so the correlation is handled automatically. In 

addition, a much broader set of relationships may be expressed than 

those captured in the Pearson Correlation. 
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Examples 

The scatter plot of the SIPs 
of two independent 
spinners (uniform 
uncertainties) looks like a 
square. The Pearson 
Correlation is 0. To get this 

plot with SIPmathCalc_4, 
set the X Variable to =C4, 
the Y Variable to =D4, and 
the XY Scale of the scatter 
plot to 3.  
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The scatter plot of the 
SIPs of two independent 
normals with the same 
mean and SD looks like a 
circle that gets denser 
toward the center. The 
Pearson Correlation is 0. 
To get this plot, set the 
Correlation control to 0, 
the X Variable to =E4, 
the Y Variable to =G4, 
and the XY Scale of the 
scatter plot to 10. 
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When the correlation control is increased, or decreased, the circle 

turns into an ellipse sloping up or down to the right. The Pearson 

Correlation matches the number on the control as shown below. At 

±1, the ellipse turns into a straight line. 
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One might conclude from this that if the Pearson Correlation is zero, 

then the variables are uncorrelated in the dictionary sense of the 

word. Set the X variable to HAP (=H4), and the Y variable to PY (=I4) to 

find out just how wrong this assumption can be. 

4.3 Portfolio Theory 

There are two basic ideas underlying Modern Portfolio Theory. 

 

First, when you diversify across multiple investments, you are less 

likely to get extreme events. This is just a generalization of the fact 

that flat plus flat equals up in the middle. The second basic idea is 

that some stocks move strongly up or down together, while some 

move less strongly together or even in opposite directions. This is 

measured by the correlation. If you split you investment between 

two stocks that go up and down together, it is like owning a half share 

in two houses so close to each other that if one burns down, the 

other is likely to burn down as well. On the other hand, if the two 

stocks are independent, or better yet, move in opposite directions, 

they play the role of each other’s insurance policies to some extent, 

and the combined investment of both stocks is less risky than the 

investment in only one stock.  

 

We will model the returns of two stocks with normal distributions 

having identical mean annual growth rates of 6% and SD of 5%. This 

implies that, on average, each of the two investments will grow 6% a 

year, but there is 95% chance that the growth rates will be plus or 

minus 2*SD=10%, or from earning 16% to loosing 4%. We will start 

with the assumption that the returns of the two stocks are 

independent, and then experiment with correlated returns to see 
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how the risk and return of the portfolio changes. Set up 

SIPmathCalc_4 as described below. 

 

1. Fill out rows 5 and 6 of SIPmathCalc_4 as shown.  

Start with mean and SD of the return of stock 1. Then enter 

100% for the weight (percentage) of stock 1 in your portfolio. 

Enter the formula shown in cell F6 for the weight of the 

second stock. This will ensure that the sum of the two weights 

will always be 100%. Finally enter the mean and SD for stock 

2. 

 

2. The X and Y variables in C8 and D8 will model the returns of 

the two stocks. We start with cell E4, which contains a 

standard normal, that is, a normal with a mean of zero, and SD 

of 1. Recall from chapter 1 that to get a distribution with SD of 

5% we can simply multiply E4 by 5%. Because the mean was 

zero to begin with, multiplying it by any number leaves it at 

zero. Adding 6% to E4 brings us to the desired mean return 

while leaving SD at 5%. The formula in C8 is shown below. 
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Similarly, the Y variable in D8 will model the second stock as 

=G4*H6+G6. 

 

 

3. Now specify the output in cell H8 as the weighted sum of the 

two returns, that is, =E6*C8+F6*D8. 

 

4. Set the graph scale parameters as shown below. 

 

5. Note the average return is 6% as we would expect with 100% 

of our portfolio in stock 1. Finally, specify statistics as shown 

below.  
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Enter a “less than” sign into C14, and 0 into D14. This shows 

that the chance the stock loses money (a return of less than 0) 

is 11.5%. 

 

Enter 5% in cell C17. The resulting -2.2% indicates that there is 

a 5% probability (or 1 chance in 20) that a dollar invested in 

stock 1 will become a loss of $0.022 or more. 

 

 

 

The Diversification Effect 

Now repeatedly reduce the percentage of stock 1 in the portfolio (E6) 

by 10% until you reach 0%. Cell F6 should simultaneously go from 0% 

to 100%. Observe the average return and chance of losing money 

with the resulting portfolio (C15) along with the 5th percentile (C18). 

Also see how the histogram of the output changes. For which 

portfolios (combinations of weights) is the chance of losing money 5% 

or less? 
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We see that when uncorrelated investments with the same average 

return are blended, that the average return of the portfolio stays the 

same, but the chance of loss goes down. This confirms the proverb 

about not putting all your eggs in one basket.  

The Correlation Effect 

Set weight 1 to 50%, which minimizes the chance of loss at 4.5%. Now 

incrementally change the correlation between +1 and -1, while 

observing the chance of losing money and the histogram. Positive 

correlation increases the risk of loss, while negative correlation 

decreases the risk of loss. All the while, the average portfolio return 

remains at 6%. Thus, portfolio theory teaches that we reduce the risk 

of a portfolio by reducing the correlation among its constituent 

assets.  

4.4 Option Pricing 

An option is a financial contract that gives the owner the right, but 

not the obligation, to buy or sell a share of stock at a pre-specified 

price known as the Strike Price on a pre-specified date known as the 

Maturity. The right to buy is a Call Option, while the right to sell is a 

Put Option. Until 1973, the fair market price for options was not well 

understood. Then a paper by Fischer Black and Myron Scholes and 

another by Robert Merton provided a theoretical approach for pricing 

options. This unleashed tremendous growth in the market for 

financial derivatives.  

 

The interrelationships involved in option pricing are not between the 

returns of different stocks, as they are in portfolio theory, but rather 

between the value of an underlying stock and an option on that stock. 

We will use SIPmathCalc_4 to examine some important aspects of the 
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arithmetic of option pricing. Note that you will need to reformat 

certain cells such as C6 and E6 to display decimal numbers or dollar 

values rather than percentages. A full explanation of option theory 

requires an understanding of the time value of money or NPV, which 

is not presented here. Here we will focus on the interrelationships 

between the payoff of an option and its underlying stock to show 

how the value of the option is effected by the strike price and 

volatility. 

  

Set up SIPmathCalc_4 as described below. 

 

1. Fill out rows 5 and 6 of SIPmathCalc_4 as shown.  

 
The LogMean and Volatility determine the distribution of the 

future price of the underlying stock as shown in the next step, 

while the Strike is the price at which the option holder may 

purchase the stock.  

 

2. Cell C8 will contain the underlying stock price at maturity, 

specified as a “lognormal” distribution. You should recognize 

E4*D6+C6 to be a normal distribution with a mean of C6 and 

SD of D6, as in the portfolio example above. If you are not 
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familiar with the EXP (exponentiation) formula, you may 

simply refer to the graph in C8, which is known as a lognormal 

distribution. 

 

For those who do understand the concept of exponentiation, 

this formula raises a number with special mathematical 

properties, called e, to a power drawn from a normal 

distribution. Because the log of the resulting variable is 

normal, it is called lognormal. I find this nomenclature 

confusing. It would be like calling me dognormal because I 

have a normal dog!  

 

In any event, just as normal distributions arise when 

uncertainties are added together, lognormal distributions 

typically arise when uncertainties are multiplied together. In 

the case of stock prices, it is the daily percentage increases or 

decreases in value that are multiplied through time to get the 

current price. 
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Set the Output cell to =C8 and adjust the override values to 

display the full histogram and average stock price as shown 

below. 

 

Be sure to format the Average in D12 and the Percentile in 

C18 as $0.00 (Currency). Experiment with the LogMean and 

Volatility parameters to see how the shape of the distribution 

and average stock price respond. For example, change 

Volatility from .25 to .3, and C8 should go  

from 
 
with an Average of $7.62 to  with an 

Average of $7.73. 

These display the characteristic “skewed” shape of the 

lognormal distribution. 
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The Minimum and Bin Width of the histogram can be 

overridden temporarily with the numbers 3 and 1 in cells F19 

and G19 to improve the readability of the graph. Delete these 

values before proceeding to the next step. 

 

3. Now we will enter the formula for the payoff of the option in 

cell D8. This is an “IF” formula as follows.  

        =IF(C8>E6,(C8-E6),0) 

a. If the stock price in C8 is greater than the strike price in 

E6, then the option will be exercised. That means the 

option holder will purchase the stock at the Strike price 

in E6 and sell it at the price in C8, pocketing the 

difference (C8-E6).  

b. If the stock price is not greater than the Strike price, 

then the option does not pay off, and it is worth 

nothing.  

 

 

 

4. Set the Output cell equal to the Option payoff and set the XY 

Scale to 10. 
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Histogram 

The histogram reflects the fact that there is a high chance that 

the option will have a very low value, often zero, but never 

below zero. There is also a small chance of quite a large value. 

 

Statistics 

Set cell C14 to “>” and D14 to 0. The average value of the 

option is $1.08 as shown in D12. The option pays off (has 

value >0) if stock ends up greater than the Strike price. The 

chance of this is nearly 60% as shown in C15. 

 

Set C17 to 90%. C18 shows there is a 90% chance that the 

payoff is less than or equal to $3.18. 

 

XY Chart 

The scatter plot of the option vs. the stock looks like a hockey 

stick. This is because when the stock price (on the X axis) is 

below the Strike price, the option is worth zero, and for every 

dollar the stock moves above the strike price, the value of the 

option increases by a dollar. 
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5. Play with the model. Adjust the Strike price and observe how 

the Histogram, Average payoff, Chance of payoff, and XY Chart 

change. Can you explain the changes you see? 

 

6. We will now convert the model to a Put, that is, an option that 

provides the holder with the right but not the obligation to sell 

the stock at the Strike price. Exercising this option only makes 

sense when the stock price is less than the Strike. In fact, a Put 

option may be viewed as sort of a fire insurance policy on a 

stock, which protects against loss if the stock drops in value. 

Change the formula in D8 as shown below, and again play with 

the inputs to gain an experiential understanding of the 

mathematical relationships. 

 

4.5 Summary 

Although this chapter focused on two aspects of finance, there 

are many other areas of commerce where interrelated 

uncertainties play an important role.  
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For example, in planning for natural disasters, it is important to 

make sure that multiple adverse events are not interrelated 

through a common root cause. A classic example involved the 

disaster at the Fukushima nuclear reactor in Japan following the 

earthquake in 2011. The resulting tsunami breached the sea wall 

and took out the electricity powering the cooling system. Planning 

ahead, the plant had backup diesel generators for just such power 

interruptions. It is too bad they put them in a place that would 

flood when they were needed most. Thus, the chances of both 

primary and backup power systems were positively interrelated. 
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